Step of Proof: fseg_member
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
fseg
member
:
T
:Type,
l1
,
l2
:(
T
List),
x
:
T
. fseg(
T
;
l1
;
l2
)
(
x
l1
)
(
x
l2
)
latex
by ((((Auto
)
CollapseTHEN (D (-2)
))
)
CollapseTHEN (((((((if (first_bool T:b
C
) then HypSubst' else RevHypSubst') ( -2)( 0))
)
CollapseTHENA (Auto
))
)
CollapseTHEN (((((
C
RWO "member_append" 0)
THENM (OrRight))
)
T
CollapseTHEN (Auto
))
))
))
latex
TC
.
Definitions
fseg(
T
;
L1
;
L2
)
,
x
:
A
.
B
(
x
)
,
||
as
||
,
i
j
,
A
B
,
[
car
/
cdr
]
,
SQType(
T
)
,
type
List
,
s
~
t
,
,
{
x
:
A
|
B
(
x
)}
,
s
=
t
,
t
T
,
,
Type
,
x
:
A
.
B
(
x
)
,
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
P
Q
,
P
Q
,
x
:
A
B
(
x
)
,
P
Q
,
(
x
l
)
,
{
T
}
Lemmas
fseg
wf
,
non
neg
length
,
cons
one
one
,
guard
wf
,
nat
wf
,
member
wf
,
member
append
,
l
member
wf
origin