Step of Proof: fseg_member 11,40

Inference at * 
Iof proof for Lemma fseg member:


  T:Type, l1l2:(T List), x:T. fseg(T;l1;l2 (x  l1 (x  l2
latex

 by ((((Auto
CollapseTHEN (D (-2)))
CollapseTHEN (((((((if (first_bool T:b
C) then HypSubst' else RevHypSubst') ( -2)( 0))
CollapseTHENA (Auto))
CollapseTHEN (((((
CRWO "member_append" 0) 
THENM (OrRight))
TCollapseTHEN (Auto)))))) 
latex


TC.


Definitionsfseg(T;L1;L2), x:AB(x), ||as||, i  j , A  B, [car / cdr], SQType(T), type List, s ~ t, , {x:AB(x)} , s = t, t  T, , Type, x:AB(x), P  Q, P & Q, x:A  B(x), P  Q, P  Q, x:AB(x), P  Q, (x  l), {T}
Lemmasfseg wf, non neg length, cons one one, guard wf, nat wf, member wf, member append, l member wf

origin